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We consider a finite sequence of random points in a finite domain of finite-dimensional
Euclidean space. The points are sequentially allocated in the domain according to the
model of cooperative sequential adsorption. The main peculiarity of the model is that
the probability distribution of any point depends on previously allocated points. We
assume that the dependence vanishes as the concentration of points tends to infinity.
Under this assumption the law of large numbers, Poisson approximation and the central
limit theorem are proved for the generated sequence of random point measures.

KEY WORDS: cooperative sequential adsorption with infinite range cooperative ef-
fects, the law of large numbers, Poisson approximation, the central limit theorem,
Gaussian random field

1. INTRODUCTION AND THE RESULTS

In this paper we study the asymptotic behavior of random point measures

µm =
m∑

i=1

δXi , (1)

generated by random points X1, . . . , Xm sequentially allocated in a compact set
D ⊂ Rd . To describe the joint distribution of X1, . . . , Xm we need some notation.
For any point x ∈ D and a finite non-empty set y = {y1, . . . , yn}, yi ∈ D, n ≥ 1,

we denote by n(x, y) the number of points yi ∈ y, such that the distance between x
and yi is not greater than R(x), where R : D → R+ is some measurable function.
By definition n(x,∅) = 0. The number R(x) is called the interaction radius at point
x . Let {βn(x), n ≥ 0} be a sequence of measurable positive bounded functions on
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D. Denote for short X (k) = (X1, . . . , Xk), k ≥ 1, and X (0) = ∅. Given the set of
points X (k) the conditional distribution of point Xk+1 is specified by the following
probability density

ψ(x | X (k)) = βn(x,X (k))(x)

α(X (k))
, (2)

where

α(X (k)) =
∫
D

βn(u,X (k))(u) du,

is the normalizing constant. The joint probability density of X1, . . . , Xm at points
x1, . . . , xm is

pm(x1, . . . , xm) =
m∏

k=1

βn(xk ,x<k )(xk)∫
D βn(x,x<k )(x)dx

=
m∏

k=1

ψ(xk | x<k), (3)

where we denoted for short x<k = (x1, . . . , xk−1), k ≥ 2, and x<1 = ∅ for k = 1.
Let us give examples of the situations where this set of sequentially allocated

random points naturally appears. First we do it in terms of continuous time dy-
namic processes describing adsorption reactions with cooperative effects. Namely,
consider a spatial birth process x(t), t ≥ 0, in D with birth rates defined in terms
of functions βn(x), n ≥ 0, as follows. If the process state at time t ≥ 0 is x, then
the birth rates are βn(x,x)(x), x ∈ D, so the total birth rate is α(x) and the time
until the next jump is an exponential random variable with mean α−1(x). Assume
that x(0) = ∅ and consider a random point process X (m) = (Xk, k = 1, . . . , m)
formed by the first m points of the spatial birth process x(t). It is easy to see that
the first point X1 has the probability distribution specified by the function β0(x)
normalized to be a probability density. Given X1, . . . , Xk, k ≥ 1, the conditional
distribution of Xk+1 is specified by the probability density (2). The spatial birth
process just described is a continuous version of a lattice model of monomer filling
with nearest-neighbor cooperative effects. It is a particular case of the models of
cooperative sequential adsorption widely used in physics and chemistry for mod-
eling various adsorption processes (see Refs. 2 and 5 for more details and surveys
of the relevant literature).

The set of random points X (m) can be also viewed as the output of the
following sequential packing process. Consider random points Yi , i ≥ 1, sequen-
tially arriving in D. Each point Yi is uniformly distributed in D and is accepted
with probability depending on the number of previously accepted points in the lo-
cal configuration near Yi . More precisely, let Y (N ) = (Y1, . . . , YN ) be a set of the
first N arrived points and let X (k) = (X1, . . . , Xk), k = k(N ), be a set of accepted
ones among Yi , i = 1, . . . , N . Next uniformly distributed arrival YN+1 is accepted
with probability βn(YN+1,X (k))(YN+1)/C, where C is an arbitrary constant such that
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supn supx∈D βn(x) ≤ C . Regardless of the particular choice of C the probability
density of the next accepted point Xk+1 is given by the formula (2). The value of
C influences only the number of discarded arrivals until next acceptance. In other
words, given the set of previously accepted points X (k), we use a well known
acceptance-rejection sampling for simulating a random variable which distribu-
tion is specified by the unnormalized probability density βn(x,X (k))(x), x ∈ D. The
sequence of points X (m) is a set of first m sequentially accepted points.

The measures (1) belong to the class of random point measures generated
by the spatial processes arising in random sequential packing and deposition
problems (see Refs. 1, 6 and references therein). The typical example is when
one sequentially allocates m points in the unit cube. Each point is uniformly
distributed in the cube and is accepted with probability depending on configuration
of previously accepted points in a ball of volume 1/m centered at the point. It
means that the interaction radius decays and a point typically has a finite number of
neighbors in the limit m → ∞. This regime corresponds to finite range interaction
between points. It is not the case in our model where the interaction radius is a
fixed positive function (or constant) regardless of the number of points. In our case
the radius is comparable to the volume size (it implies that a typical number of
neighbors is linear in m). In some sense this corresponds to the so-called infinite
range of interaction or infinite range cooperative effects, see, for instance, Ref. 2.

Our other main assumption is that βn(x) → β(x) > 0 as n → ∞ uniformly
in x ∈ D, where function β is bounded below and above. Under our assumptions
the sequence of random variables Xk, k ≥ 1, converges in total variation to a
random variable with the probability density specified by function β(x), x ∈ D,

appropriately normalized. Therefore the model can be considered as a perturbation
of the binomial case which is βn(x) = β(x), x ∈ D for any n ≥ 0. The perturba-
tion vanishes while the domain is saturated by points. The distribution of a new
arrival becomes “more uniform” and “more independent” on the existing config-
uration of points provided the domain is sufficiently saturated and the saturation
is “sufficiently uniform.” We make it rigorous in Lemma 1.1. In the binomial case
we immediately get Theorems 1.1, 1.2 and 1.3, since the points are independent.
In general case the points are dependent and we arrive at the proof of the law
of large numbers, the central limit theorem and Poisson approximation for the
sequence of dependent random variables. Some care should be taken to assess the
weakening of dependence in the tail of the sequence X (m). Note that we obtain
the central limit theorem (Theorem 1.3) assuming that the sequence of functions
{βn(x), n ≥ 0} converges to its limit with some rate.

These limit theorems can be used for understanding the qualitative behavior
of high density point patterns obtained by an idealized adsorption process specified
by two conditions. The first one is that the interaction radius is sufficiently large.
This is modeled by assuming that the radius does not decrease as the number
of points increases. The second one is that a point is allowed to have unlimited



1428 Shcherbakov

number of neighbors. This is provided by soft-core type of interaction, i.e., the
reaction rates are positive regardless of configuration (positiveness of functions
β’s). Besides, the reaction rates depend on local environment and stabilize when
the concentration of adsorbed molecules is sufficiently high.

Remark 1. We will denote by the letter C or by the letter C with subscripts the
various constants the particular values of which are immaterial for the proofs.
By B(D) the set of real-valued measurable bounded functions on D is denoted
and ‖ f ‖∞ = supx∈D | f (x)| for f ∈ B(D). It is assumed that the random variables
Xk, k ≥ 1, are realized on some probability space with probability measure P and
E is expectation with respect to P.

Theorem 1.1. Assume that inf x∈D R(x) > 0, the sequence of positive functions
βn ∈ B(D), n ≥ 0, is uniformly bounded and converges uniformly as n → ∞ to
a function β ∈ B(D), such that inf x∈D β(x) > 0. Then the law of large numbers
holds for the sequence of random measures µm. That is for any function f ∈ B(D)

1

m

∫
D

f (x)dµm(x) = 1

m

m∑
i=1

f (Xi ) → J ( f ) = 1

α

∫
D

f (x)β(x) dx,

in probability as m → ∞, where α = ∫
D β(x) dx .

Theorem 1.2. In addition to the assumptions of Theorem 1.1 assume that the
function β is continuous. Fix an arbitrary x ∈ D and r > 0. Let Sm(x, r ) be a
number of those points Xk, k = 1, . . . , m, that fall in a ball B(x, rm−1/d ). Then
a sequence of random variables Sm(x, r ), m ≥ 1, converges in distribution to a
Poisson random variable with parameter rdbdβ(x)/α, where bd is a volume of a
d−dimensional ball with unit radius.

Theorem 1.3. In addition to the assumptions of Theorem 1.1 assume that

|βn(x) − β(x)| ≤ τ (x)ϕ(n), (4)

for any n ≥ 0, where a function ϕ(s) > 0, s ≥ 0, is such that ϕ(s) → 0 as s → ∞
and for any δ > 0

1√
n

n∑
k=0

ϕ(kδ) → 0, (5)

as n → ∞, the function τ ∈ B(D) is such that inf x∈D τ (x) > 0. Then the sequence
centered and rescaled random measures (µm − Eµm)/

√
m converges as m → ∞

to a generalized Gaussian random field on D with zero mean and the covariance
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kernel

G( f, g) = J ( f g) − J ( f )J (g)

= 1

α

∫
D

f (x)g(x)β(x) dx − 1

α2

∫
D

f (x)β(x) dx

∫
D

g(x)β(x) dx,

for any functions f, g ∈ B(D). Here the convergence refers to the convergence of
the corresponding sequence of finite-dimensional distributions.

To prove these theorems we will use Lemmas 1.1–1.4.

Lemma 1.1. Assume that inf x∈D R(x) > 0 and

0 < βmin = inf
n

inf
x∈D

βn(x) ≤ βmax = sup
n

sup
x∈D

βn(x) < ∞,

then there exists a positive constant δ0 such that for any δ ∈ (0, δ0)

P
{

inf
x∈D

n(x, X (m)) ≤ mδ
} ≤ Ce−λm, (6)

with some positive constants C = C(δ) and λ = λ(δ) for all sufficiently large m.
If the assumptions of Theorem 1.1 hold, then for any ε > 0

P
{

sup
x∈D

|βn(x,X (m))(x) − β(x)| ≥ ε
} ≤ Ce−λm, (7)

and

P {|α(X (m)) − α| ≥ ε} ≤ Ce−λm (8)

with the same positive constants C and λ for all sufficiently large m.

Corollary 1.1. If the assumptions of Theorem 1.1 hold, then the sequence
Xm, m ≥ 1, converges in total variation to a random variable X distributed
according to the density β(x)/α, as m → ∞.

Let Fk−1 be a σ−algebra generated by the random variables X1, . . . , Xk−1.

For any function f ∈ B(D) denote

Jk( f ) = E( f (Xk) |Fk−1).

Lemma 1.2.
1) If the assumptions of Theorem 1.1 hold, then for any function f ∈ B(D)

and for any p ≥ 1

E|Jk( f ) − J ( f )|p → 0

as k → ∞.



1430 Shcherbakov

2) If the assumptions of Theorem 1.3 hold and δ0 is the constant determined
in Lemma 1.1, then for any δ ∈ (0, δ0)

E|Jk( f ) − J ( f )|p ≤ C(ϕ p(kδ) + e−λk)

as k → ∞, with some constant λ = λ(δ).

Let Y be a random variable with probability density β(x)/α. For any function
f ∈ B(D) and n ≥ 1 denote

Un( f ) = E( f (Y ) − E f (Y ))n =
n∑

i=0

(−1)n−i

(
n

i

)
J ( f i )J n−i ( f ), (9)

and ξk( f ) = f (Xk) − E f (Xk).

Corollary 1.2. Let f ∈ B(D) and fix some positive integer n. Then
1) under assumptions of Theorem 1.1

E
∣∣E (

ξ n
k ( f )|Fk−1

) − Un( f )
∣∣ → 0

as k → ∞, and
2) under assumptions of Theorem 1.3

E
∣∣E (

ξ n
k ( f )|Fk−1

) − Un( f )
∣∣ ≤ Cxs(ϕ(kδ) + e−λk)

as k → ∞.

Lemma 1.3. Fix a set of functions g1, . . . , gk ∈ B(D) and a set of positive
integers r1, . . . , rk and let n = r1 + · · · + rk . Let a set of indices be such that
i1 < · · · < ik and denote by η a random variable measurable with respect to the
σ−algebra Fi1−1.

1) If the assumptions of Theorem 1.1 hold, then∣∣∣∣∣E
(

η

k∏
v=1

ξ
rk
iv

(gv)

)
− Eη

(
k∏

v=1

Urk (gv)

)∣∣∣∣∣ → 0

as i1 → ∞. In particular, for any f, g ∈ B(D) and k �= j

Cov( f (Xk), g(X j )) → 0,

as max(k, j) → ∞.
2) If the assumptions of Theorem 1.3 hold, then there exist constants C =

C(k, g1, . . . , gk) such that for any δ ∈ (0, δ0)∣∣∣∣∣Eη

k∏
v=1

ξ
rk
iv

(gv) − Eη

k∏
v=1

Urk (gv)

∣∣∣∣∣ ≤ Cn
k∑

v=1

(
ϕ(ivδ) + e−λiv

)
, (10)
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for all sufficiently large indices i1 < · · · < ik, k ≥ 1, where the constants λ and
δ0 are determined in Lemma 1.1.

Lemma 1.4. Under the assumptions of Theorem 1.3 the sequence of random
variables

1√
m

m∑
k=1

(Jk( f ) − E f (Xk))

converges to 0 in probability as m → ∞.

2. PROOFS

Proof of Theorem 1.1. Let us prove first that for any function f ∈ B(D)

1

m

m∑
k=1

E f (Xk) → J ( f ), (11)

as m → ∞. Indeed, By Lemma 1.2 we have that E f (Xk) → J ( f ), as k → ∞.
Fix an arbitrary ε > 0 and let k(ε) be such that |E f (Xk) − J ( f )| ≤ ε as k > k(ε).
It is easy to see that∣∣∣∣∣ 1

m

m∑
k=1

E f (Xk) − J ( f )

∣∣∣∣∣ ≤ 2
k(ε)

m
‖ f ‖∞ + m − k(ε)

m
ε.

The first term in the right side of the preceding equation goes to 0 as m → ∞, the
second is less than ε. Thus we get (11) since ε is arbitrary. It suffices now to prove
that

1

m

m∑
k=1

( f (Xk) − E f (Xk)) → 0,

in probability as m → ∞. By Chebyshev inequality we have that for any ε > 0

P

{∣∣∣∣∣
m∑

k=1

f (Xk) − E f (Xk)

∣∣∣∣∣ ≥ εm

}
≤ 1

ε2m2

m∑
k, j=1

Cov( f (Xk), f (X j )).

If k �= j , then by part 1) of Lemma 1.3 Cov( f (Xk), f (X j )) → 0 as max(k, j) →
0, therefore the right hand side of the preceding display vanishes as m → ∞.
Theorem 1.1 is proved. �

Proof of Theorem 1.2. Let x ∈ D and r > 0 be fixed. Denote for short Sm =
Sm(x, r ). We prove that for any t ∈ R

lim
m→∞ Eeit Sm = exp{(eit − 1)β(x)rdbd/α}. (12)
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By definition

Sm =
m∑

k=1

ξm,k,

where ξm,k = 1{Xk∈B(x,rm−1/d )}. For any k ≥ 1 we can write

E
(
eitξm,k |Fk−1

) = 1 + (eit − 1)pm + (eit − 1) (pm,k − pm), (13)

where pm,k = P{Xk ∈ B(x, rm−1/d ) |Fk−1} and pm is the probability that a ran-
dom variable with density β(y)/α, y ∈ D, falls in the ball B(x, rm−1/d ). Repeat-
edly using the Eq. (13) we obtain that

Eeit Sm = (1 + (eit − 1)pm)m

+ (eit − 1)
m∑

k=1

(1 + (eit − 1)pm)m−k(Epm,k − pm).

It is easy to see that mpm → β(x)rdbd/α as m → ∞. Therefore the first term in
the left hand side of the preceding display tends to the characteristic function of
the Poisson distribution with parameter β(x)rdbd/α. Let us show that the second
term in the left hand side of the preceding display vanishes as m → ∞. Noting that
pm = J ( fm) and pm,k = Jk( fm) with function fm(y) = 1{y∈B(x,rm−1/d )} and using
Remark 1 after the proof of Lemma 1.2 (the bound (29)) we can write

E|pm,k − pm | ≤ C

m
E sup

y∈D

∣∣βn(y,X (k−1))(y) − β(y)
∣∣. (14)

Fix an arbitrary ε > 0. An argument leading to the bounds (26) and (27) in the
proof of Lemma 1.2 gives us here that there exists such k(ε) that for any k ≥ k(ε)
we can replace the bound (14) by the following one

E|pm,k − pm | ≤ C1

m
(ε + e−λk), (15)

where constant λ is the same as in Lemma 1.1. Hence we can bound∣∣∣∣∣(eit − 1)
m∑

k=1

(1 + (eit − 1)pm)m−k(Epm,k − pm)

∣∣∣∣∣ ≤
(

C2ε + C3

m

)
.

Therefore we finished the proof since ε was taken arbitrary. �

Remark 2. Using Theorem 1 in Ref. 7 (a general result on Poisson approximation
for sums of possibly dependent nonnegative integer-valued random variables) one
can also bound

sup
A⊂Z+

|P{Sm ∈ A} − P{Ym ∈ A}| ≤
m∑

k=1

p2
m +

m∑
k=1

E|pm,k − pm |, (16)
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where Ym is a Poisson random variable with parameter mpm . Combining the bound
(15) with the fact that mpm has a finite limit as m → ∞ one can show that the
right hand side of the Eq. (16) vanishes as m → ∞.

Proof of Theorem 1.3. It suffices to prove that for any function f ∈ B(D) the
sequence of random variables

Sm( f ) = 1√
m

m∑
k=1

( f (Xk) − E f (Xk)) (17)

converges weakly as m → ∞ to a Gaussian random variable with mean zero and
the variance G( f, f ) = J ( f 2) − J 2( f ). Note that

Sm( f ) = Zm( f ) + 1√
m

m∑
k=1

(Jk( f ) − E f (Xk)), m ≥ 1, (18)

where

Zm( f ) = 1√
m

m∑
k=1

( f (Xk) − E( f (Xk)|Fk−1))

= 1√
m

m∑
k=1

( f (Xk) − Jk( f )), m ≥ 1.

By Lemma 1.4 the second term in the right hand side of the Eq. (18) converges to 0
as m → ∞. Therefore to prove the theorem we need to prove that the sequence of
random variables Zm( f ), m ≥ 1, converges weakly to a Gaussian random variable
with mean zero and the variance G( f, f ) as m → ∞. Note that {Zm( f ),Fm, m ≥
1} is a zero-mean, square-integrable martingale array with differences ζmk =
( f (Xk) − Jk( f ))/

√
m, k = 1, . . . , m. It is easy to see that

max
k

|ζmk | ≤ 2‖ f ‖∞√
m

→ 0, (19)

and

E
(
max

k
ζ 2

mk

) ≤ 4‖ f ‖2
∞

m
→ 0. (20)

By Corollary 1.1 and Lemma 1.2 E( f (Xk) − Jk( f ))2 converges to G( f, f )
as k → ∞. Consequently

∑m
k=1 Eζ 2

mk converges to G( f, f ) as m → ∞.
Combining the results of Lemmas 1.2 and 1.3 it is easy to obtain that
Cov(( f (Xk) − Jk( f ))2, ( f (X j ) − Jj ( f ))2 tends to 0 for k �= j as max(k, j) →



1434 Shcherbakov

∞. It yields that V ar
(∑m

k=1 ζ 2
mk

)
vanishes as m → ∞. Therefore

m∑
k=1

ζ 2
mk → G( f, f ), (21)

in probability as m → ∞.
The Eqs. (19), (20) and (21) mean that the conditions of Theorem 3.2 in Ref. 3

hold for the martingale array {Zm( f ),Fm, m ≥ 1}. Therefore Zm( f ) converges in
distribution to a Gaussian random variable with zero mean and covariance G( f, f )
as m → ∞ and Theorem 1.3 is proved.

Proof of Lemma 1.1. Without loss of generality we assume that the set D is a
d−dimensional unit cube. If l ∈ Z+ is the minimal integer such that

p(l) = l−d βmin

βmax
< 1, and 1/ l <

1

4
inf
x∈D

R(x),

then we put δ0 = p(l). Let {Qi , i = 1, . . . , ld} be a set of non-overlapping cubes
of size 1/ l such that D = ⋃

i Qi . Denote by ξmi a number of points X1, . . . , Xm

falling in the cube Qi . Take a point x ∈ D and let x ∈ Qi for some i . It is easy to
see that

n(x, X (m)) ≥ ξmi ≥ min
j

ξmj , (22)

since Qi ⊂ B(x, R(x)). The Eq. (22) implies that

{n(x, X (m)) ≤ z} ⊂ Am = {
min

i
ξmi ≤ z

} =
⋃

i

{ξmi ≤ z},

for any z > 0. It is obvious that

P{Am} ≤ ld max
i

P{ξmi ≤ z}.

The formula (2) yields that

P{Xk ∈ Qi | X (k − 1)} =
∫

Qi
βn(u,X (k−1))(u)du∫

D βn(u,X (k−1))(u)du
.

This conditional probability can be bounded below by p(l) uniformly in sequences
X (k − 1). Therefore the unconditional probability P{Xk ∈ Qi } is also bounded
below by the same constant for any k ≥ 1. Using the well-known coupling con-
struction we can construct on the same probability space the random variable ξmi

and the binomial random variable ξ̃mi with m trials and with p(l) the probability
of success such that ξmi stochastically dominates ξ̃mi . So, we have that

P{ξmi ≤ mδ} ≤ P{ξ̃mi ≤ mδ}
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for any δ > 0. If we take δ such that 0 < δ < δ0 = p(l), then the well known large
deviations bounds for the sums of i.i.d. random variables give us that

P{ξ̃mi ≤ mδ} ≤ Ce−λm,

with some positive constants C and λ. Therefore

P
{

inf
x∈D

n(x, X (m)) ≤ mδ
} ≤ ld max

i
P{ξmi ≤ mδ} ≤ Clde−λm

and the proof of the bound (6) is over. The bounds (7) and (8) are immediate
implication of the bound (6) and the convergence of the β ′s. Indeed, for any ε > 0
we have that supx∈D | βn(x,X (m))(x) − β(x)| < ε as soon as inf x∈D n(x, X (m)) >

n(ε), for some n(ε). Lemma 1.1 is proved. �

Proof of Corollary 1.1. By the Eq. (2) the unconditional density of the random
variable Xk+1 at point x is

Eψ(x | X (k)) = E
βn(x,X (k))(x)

α(X (k))
.

The integrand in this mean is bounded and converges in probability to β(x)/α
as k → ∞ by Lemma 1.2. Therefore, Eψ(x |X (k)) → β(x)/α for any x ∈ D as
k → ∞. It is well known that the point-wise convergence of densities implies the
convergence in total variation. Corollary 1.1 is proved. �

Proof of Lemma 1.2. To simplify the notation we assume that the Lebesgue
measure of the set D is 1. We start with part 1). Let δ0 be a constant defined in
Lemma 1.1. Note that

Jk( f ) = 1

α(X (k − 1))

∫
D

f (x)βn(x,X (k−1))(x)dx, k ≥ 1.

Fix an arbitrary ε > 0 and define

Bk,ε = {
sup
x∈D

|β(x) − βn(x,X (k−1))(x)| ≥ ε
}
, k ≥ 1. (23)

One can write

E |Jk( f ) − J ( f )|p = E |Jk( f ) − J ( f )|p I{Bk,ε} + E |Jk( f ) − J ( f )|p I{Bk,ε}

= S1 + S2,

where by I{B} we denoted an indicator of an event B. It is easy to see that

Jk( f ) − J ( f ) =
∫

D f (x)(βn(x,X (k−1))(x) − β(x))dx

α(X (k − 1))

+J ( f )

∫
D(β(x) − βn(x,X (k−1))(x))dx

α(X (k − 1))
, (24)
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hence

|Jk( f ) − J ( f )| ≤ 2‖ f ‖∞
βmin

sup
x∈D

∣∣β(x) − βn(x,X (k−1))(x)
∣∣. (25)

Let k(ε) be such that ‖βk − β‖∞ ≤ ε for any k > k(ε). Then for any k > k(ε) we
can bound

S1 ≤ Cε p. (26)

Using Lemma 1.1 we have that for sufficiently large k

S2 ≤
(

4‖ f ‖∞βmax

βmin

)p

P{Bk,ε} ≤ Ce−λk . (27)

Combining bounds (26) and (27) we get that for all sufficiently large k

‖Jk( f ) − J ( f )‖p
L p ≤ C(ε p + e−λk).

Therefore L p-convergence of Jk( f ) to J ( f ) is proved for any p > 1, since ε was
taken arbitrary. Part 1) of the lemma is proved.

Let now the condition (5) holds. Fix an arbitrary δ ∈ (0, δ0) and define

Bk,δ = {
inf
x∈D

n(x, X (k − 1)) ≥ kδ
}
, k ≥ 1. (28)

One can repeat the reasonings above using this sequence of events instead of the
events (23) and get the bound S1 ≤ Cϕ p(kδ), therefore part 2) of Lemma 1.2 is
also proved. �

Remark 3. Note that in the Eq. (25) it is also possible to bound

|Jk( f ) − J ( f )| ≤ 2‖ f ‖1

βmin
sup
x∈D

∣∣β(x) − βn(x,X (k−1))(x)
∣∣, (29)

where ‖ f ‖1 = ∫
D | f (x)|dx .

Proof of Corollary 1.2. By the binomial formula we have that

∣∣E (
ξ n

k ( f ) |Fk−1
) − Un( f )

∣∣ ≤
n∑

i=0

(
n

i

)∣∣Jk( f i ) (E f (Xk))n−i − J ( f i ) J n−i ( f )
∣∣.

Noting that∣∣Jk( f i )(E f (Xk))n−i − J ( f i )J n−i ( f )
∣∣ ≤ C

(∣∣Jk( f i ) − J ( f i )
∣∣

+ |E f (Xk) − J ( f )|)
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and applying part 1) of Lemma 1.2 we prove part 1) of the corollary. If the condition
(4) holds, then by part 2) of Lemma 1.2 we can bound for any δ ∈ (0, δ0)

E|Jk( f i ) − J ( f i )| + |E f (Xk) − J ( f )| ≤ C(ϕ(kδ) + e−λk) (30)

and part 2) of the corollary is also proved. �

Proof of Lemma 1.3. We can write

E

(
η

k∏
v=1

ξ
rv

iv
(gv)

)
= Urk (gk)E

(
η

k−1∏
v=1

ξ
rv

iv
(gv)

)

+ E

(
η

k−1∏
v=1

ξ
rv

iv
(gv)

(
E

(
ξ

rk
ik

(gk) |Fik−1
) − Urk (gk)

))
.

The functions g′s are bounded, so∣∣∣∣∣Eη

k−1∏
v=1

ξ
rv

iv
(gv)

(
E

(
ξ

rk
ik

(gk) |Fik−1
) − Urk (gk)

)∣∣∣∣∣
≤ Cn−rk

1 E
∣∣E (

ξ
rk
ik

(gk) |Fik−1
) − Urk (gk)

∣∣ ,
and the right hand side above goes to 0 as ik → ∞ by part 1) of Corollary 1.2. If
the condition (5) holds, then by part 2) of Corollary 1.2 we can bound

E|E (
ξ

rk
ik

(gk) |Fik−1
) − Urk (gk)| ≤ C2(ϕ(ikδ) + e−λik )

for any δ ∈ (0, δ0) with some λ = λ(δ). Repeating the same arguments for the
indices ik−1, . . . , i1 in E

(
η

∏k−1
v=1 ξ

rv

iv
(gv)

)
we finish the proof. �

Proof of Lemma 1.4. Let us prove that

1√
m

m∑
k=1

(Jk( f ) − J ( f )) → 0, (31)

in probability as m → ∞. Using the bound (25) we get that

|Jk( f ) − J ( f )| ≤ C1

∫
D

∣∣∣∣βn(x,X (k−1))(x) − β(x)

∣∣∣∣dx I{Bk,δ} + C2 I{Bk,δ}

where Bk,δ is the event defined by the Eq. (28). Therefore

1√
m

∣∣∣∣∣
m∑

k=1

(Jk( f ) − J ( f ))

∣∣∣∣∣ ≤ C1√
m

m∑
k=1

∫
D

∣∣βn(x,X (k−1))(x) − β(x)
∣∣dx I{Bk,δ}

+ C2√
m

m∑
k=1

I{Bk,δ}. (32)
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By Lemma 1.1

∞∑
k=1

P{Bk,δ} < ∞,

hence by Borel-Cantelli lemma only a finite number of events Bk,δ occurs with
probability 1, so

C2√
m

m∑
k=1

I{Bk,δ} → 0

almost surely as m → ∞. The first sum in the right hand side of the Eq. (32) is
bounded by

C1√
m

m∑
k=1

sup
x∈D

∣∣βn(x,X (k−1))(x) − β(x)
∣∣I{Bk,δ} ≤ C3√

m

m∑
k=0

ϕ(kδ),

and it goes to 0 as m → ∞ because of the Eq. (5). Repeating the same arguments
we can also prove that

1√
m

m∑
k=1

(E f (Xk) − J ( f )) → 0,

as m → ∞, therefore Lemma 1.4 is proved. �

3.. EXPONENTIAL RATE OF CONVERGENCE

If the rate of convergence in (4) is exponential, namely if ϕ(k) = exp(−γ k)
for some γ > 0, then stronger statement of asymptotic independence of random
variables Xk, k ≥ 1, can be made. Fix some 0 < ε < 1/2 and denote

S̃m( f ) = 1√
m − mε

m∑
k=mε

( f (Xk) − E f (Xk)).

Let Yi , i ≥ 1, be a collection of independent random variables with the common
probability density β(x)/α. Denote

S0,m( f ) = 1√
mε

mε∑
k=1

( f (Yk) − E f (Yk)),

where we denoted mε = m − mε. We are going to show that for a fixed set of
positive indexes r1, . . . , rk , such that r1 + · · · + rk = n the following expansion
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holds
k∏

j=1

ES̃
r j
m ( f ) =

k∏
j=1

ES
r j

0,m( f ) + ζm(r1, . . . , rk, f ), (33)

where

|ζm(r1, . . . , rk, f )| ≤ C(n)mε+n/2e−ρmε

.

For the simplicity of notation we prove the expansion (33) for the particular case
k = 1, r1 = n. It is easy to see that

ES̃n
m( f ) = m−n/2

ε

∑
t1,...,tp

∑
mε≤i1<...<i p≤m

E
p∏

v=1

ξ
tv
iv

( f ),

where the first sum is over all sets of positive integers ti , i = 1, . . . , p, such that
t1 + · · · + tp = n. We get the expansion (33) if we put

ζm(n, f ) = m−n/2
ε

∑
t1,...,tp

∑
mε≤i1<...<i p≤m

(
E

p∏
v=1

ξ
tv
iv

( f ) −
p∏

v=1

Utv ( f )

)
.

Applying the bound (10) with ϕ(k) = exp(−γ k) yields that∣∣∣∣∣E
p∏

v=1

ξ
tv
iv

( f ) − E
p∏

v=1

Utv ( f )

∣∣∣∣∣ ≤ C
p∑

v=1

e−ρiv ,

where ρ = min(γ, λ). Therefore we get that

|ζm(n, f )| ≤ m−n/2
ε

∑
t1,...,tp

∑
mε≤i1<...<i p≤m

C
p∑

v=1

e−ρiv . (34)

It is easy to see that for any fixed set of positive integers t1, . . . , tp in the first sum
we can bound

m−n/2
ε

∑
mε≤i1<...<i p≤m

Cn
1

p∑
v=1

e−ρiv ≤ C2m(ε−1/2)n(m − mε)p−1e−ρmε

≤ C3mε+n/2e−ρmε

.

The first sum in (34) contains the number of terms depending only on n, therefore

|ζm(n, f )| ≤ C4mε+n/2e−ρmε

.

Using the representation (33) we can prove that Kmn( f ) the nth cumulant of
S̃m( f ) converges as m → ∞ to the cumulant of a Gaussian random variable
with zero mean and the variance G( f, f ). Using Lemma 1.3 it is easy to prove
that Km2( f ) → G( f, f ) as m → ∞. Let us prove that Kmn( f ) → 0 as m → ∞
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for n ≥ 3. Recall that the cumulants Kmn( f ), n ≥ 1, are defined as the Taylor
coefficients of the logarithm of the characteristic function

log Eeit S̃m ( f ) =
∞∑

n=1

Kmn( f )
(i t)n

n!
, t ∈ R. (35)

Each cumulant can be presented as a finite linear combination of the products of
moments (see, for instance, Ref. 4)

Kmn( f ) =
n∑

k=1

(−1)k−1(k − 1)!
∑

r1,...,rk

k∏
j=1

ES̃
r j
m ( f ), (36)

where the second sum is over all sets of positive integers {r1, . . . , rk} such that
r1 + · · · + rk = n. The Eq. (33) yields that

Kmn( f ) = K(0)
mn( f ) +

n∑
k=1

(−1)k−1(k − 1)!
∑

r1,...,rk

ζm(r1, . . . , rk, f ), (37)

where K(0)
mn( f ) is nth cumulant of the random variable S0,m( f ). Because of in-

dependence we have that K(0)
mn( f ) ∼ m−n/2+1

ε → 0 for any n > 2 as m → ∞. It
remains to note that∣∣∣∣∣

n∑
k=1

(−1)k−1(k − 1)!
∑

r1,...,rk

ζm(r1, . . . , rk, f )

∣∣∣∣∣ ≤ C5n!mε+n/2e−ρmε → 0,

as m → ∞. Thus the convergence of cumulants is proved. It is well known that
this implies the weak convergence.
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